Brain Gene Expression During REM Sleep Depends on Prior Waking Experience
نویسندگان
چکیده
منابع مشابه
Brain gene expression during REM sleep depends on prior waking experience.
In most mammalian species studied, two distinct and successive phases of sleep, slow wave (SW), and rapid eye movement (REM), can be recognized on the basis of their EEG profiles and associated behaviors. Both phases have been implicated in the offline sensorimotor processing of daytime events, but the molecular mechanisms remain elusive. We studied brain expression of the plasticity-associated...
متن کاملGene expression in the brain across the sleep-waking cycle.
Sleep and waking differ significantly in terms of behavior, metabolism, and neuronal activity. Recent evidence indicates that sleep and waking also differ with respect to the expression of certain genes. To systematically investigate such changes, we used mRNA differential display and cDNA microarrays to screen approximately 10000 transcripts expressed in the cerebral cortex of rats after 8 h o...
متن کاملTargeted Memory Reactivation during Sleep Depends on Prior Learning.
STUDY OBJECTIVES When sounds associated with learning are presented again during slow-wave sleep, targeted memory reactivation (TMR) can produce improvements in subsequent location recall. Here we used TMR to investigate memory consolidation during an afternoon nap as a function of prior learning. PARTICIPANTS Twenty healthy individuals (8 male, 19-23 y old). MEASUREMENTS AND RESULTS Partic...
متن کاملBasal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
Cholinergic neurons of the basal forebrain supply the neocortex with ACh and play a major role in regulating behavioral arousal and cortical electroencephalographic activation. Cortical ACh release is greatest during waking and rapid eye movement (REM) sleep and reduced during non-REM (NREM) sleep. Loss of basal forebrain cholinergic neurons contributes to sleep disruption and to the cognitive ...
متن کاملPersistent Hyperdopaminergia Decreases the Peak Frequency of Hippocampal Theta Oscillations during Quiet Waking and REM Sleep
Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knocko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Learning & Memory
سال: 1999
ISSN: 1072-0502
DOI: 10.1101/lm.6.5.500